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Goal 
This lecture aims to give an overview of various dynamic imaging methods that take advantage of 

spatiotemporal correlations for improved performance (e.g. higher frame rate, shorter scan duration). 

 
What are spatiotemporal correlations? 
Strictly speaking, in statistical terms, a correlation refers to the linear 

relationship between two variables. For example, if Y is plotted against 

X, and the points fall on a line, then X and Y are correlated (Fig. 1). 

Extending to higher dimensions, if X and Y are vectors, the presence of 

a correlation means that Y can be predicted from X through a linear 

transformation.  

In the MRI field, the term “spatiotemporal correlations” is often used 

more loosely. Generally, it means that by knowing some data points (e.g. 

some pixels, or k-space points), we can determine the value of other 

data points that may be at different spatial locations, different k-space 

positions and/or different time points. The simple, linear relationship remains important, because many 

important reconstruction algorithms are linear or approximately linear. 

 

Why are spatiotemporal correlations important? 

Spatiotemporal correlations are important because one can estimate Y based on measuring X only. For 

example, Y may represent some unacquired data, while X represents the acquired data. By taking 

advantage of the correlation, one can fill in the missing data based on the acquired data. As a result, it is 

feasible to acquire only a fraction of the data, and accelerate the scan considerably. This concept 

becomes even more important in dynamic imaging because of the high degree of redundancy that is 

typically observed in a time series of images. As a result, there exists a great potential for accelerating a 

dynamic scan by measuring just a small fraction of the data and estimating the rest. 

 
How to fill in missing data? 
To take advantage of the inherent spatiotemporal correlations, the first requirement is to determine those 

correlations. Over the years, there have been many approaches trying to estimate them, starting from 

empirical approaches such as plugging in the closest data points to more sophisticated approaches (e.g. 
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Fig. 1.  Example of correlation. Y 

is correlated with X. 



interpolation, kriging, etc.). The key advance in the past decade in this area has been the shift from 

heuristic approaches to those that are more adaptive or tailored to the actual images. 

 

What data to acquire and what to skip? 
It is useful to introduce the concept of k-t 

space to help us gain a better handle of 

which data are acquired and which are 

skipped. In dynamic MRI, the raw data are 

acquired in k-space at different time points t. 

Equivalently, the raw data can be viewed as 

being acquired in a higher dimensional k-t 

space (1). The k-t sampling pattern 

describes the order in which data points are 

acquired at each time frame. These data 

points can refer to phase-encode lines for 

Cartesian sampling, projection angles for 

radial sampling, arcs for spiral, etc. The 

concept is applicable to 3D imaging as well, 

but is illustrated in Fig. 2 for 2D imaging for 

simplicity. 

Many of the reconstruction methods can be 

divided broadly into two classes: 1. methods with heuristically chosen k-t sampling patterns; 2. methods 

with k-t sampling patterns based on implicit knowledge or assumptions about the object. 

 

Class 1: Methods with heuristically chosen k-t sampling pattern 
This class includes methods such as sliding window (2), keyhole (3,4), RIGR (5), BRISK (6), CURE (7), 

TRICKS (8), undersampled radial (9), VIPR (10), golden-angle radial (11), among others. 

Fig. 3 shows the k-t sampling pattern for these methods. There is a wide spectrum of heuristic 

approaches to choose the k-t sampling pattern. On one end of this spectrum, all parts of k-space are 

covered as evenly as possible (2) (or at least evenly on average (7)). In that case, the entire k-space is 

guaranteed to be refreshed at some average rate. On the opposite end of the spectrum, the idea is to 

acquire the outer parts of k-space at least once, but focus most of the time updating the central parts of k-

space only, since most of the signal energy is concentrated there (3-5). The in-between approaches 

update different parts of k-space at variable rates, with more frequent updates at the center to capture the 

higher signal energy (6,8). All undersampled radial methods are included in this in-between approach, 

since radial spokes converge at the k-space center, so these radial trajectories naturally sample k-space 

at a variable rate. 
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Fig. 2. (left) Examples of k-space trajectories at successive time 

frames, for Cartesian (top) and radial sampling (bottom). 
Solid and dotted lines indicate acquired and missing data, 
respectively. The arrangement of these trajectories over 
time can be represented schematically as a k-t sampling 
pattern (right), which illustrates which phase encode lines 
(or projection angles, or spiral arcs) are acquired at each 
time frame t. 



Once the data are acquired according to the 

prescribed k-t sampling pattern, the images are 

reconstructed by recovering the missing data 

points based on the available ones. One can use 

a variety of interpolation and extrapolation 

techniques for this purpose. e.g. nearest-neighbor, 

linear, cubic spline interpolation, etc. One could 

also apply model-based approaches to estimate 

the missing data using the acquired data from the 

same time frame (5,12). 

Regardless of the exact method to recover the 

missing data, the performance of this class of 

methods follows a similar behavior. In general, it is 

increasingly difficult to recover a data point 

accurately if it is far from other acquired data 

points. Also, interpolation is more accurate than 

extrapolation. Thus, methods that have 

demonstrated better performance tend to disperse 

the data samples throughout k-t space with 

increased emphasis on the k-space center.  

 
Class 2: methods with k-t sampling pattern 
based on implicit knowledge or assumptions 

about the object 
The second class of methods uses specific k-t 

sampling patterns that are chosen based on 

knowledge or assumptions about the object. In 

some cases, this knowledge or these assumptions 

are also used to aid the reconstruction. These 

methods include the motion-ghost method (13), 

reduced field-of-view method (14), DIME (15), 

UNFOLD (16), TSENSE (17), k-t BLAST (18,19), k-t SENSE (18,19), k-t GRAPPA (20), x-f choice (21), 

lattice-permuted radial (22), among others. 

According to the properties of the Fourier transform, if certain data samples are missing, the signals in the 

conjugate domain are contaminated through a convolution with a point spread function. In turn, the point 

spread function is related to the sampling pattern through the Fourier transform. For example, it is well 

known that if the edges of k-space are missing, the point spread function has a broad sinc shape, 

Update all parts 
of k-space 
continuously at 
the same rate 
(at least on 
average). 

e.g. sliding window 

ky

t

ky

t  
e.g. CURE 

ky

t

ky

t
Update all parts 
of k-space 
continuously, 
but more 
frequently at k-
space center. 

e.g. BRISK, TRICKS 

ky

t

ky

t  
e.g.  undersampled radial, 

VIPR, golden-angle radial 

A
ng

le

t

A
ng

le

t

Acquire entire 
k-space at least 
once, then 
mainly update 
k-space  center. 

e.g. keyhole, RIGR 

ky

t

ky

t
Fig.3. Heuristically chosen k-t sampling patterns. 



resulting in an image with a low spatial resolution. Similarly, if lines of k-space are skipped at even 

intervals (e.g. in the case of parallel imaging), the point spread function is a set of closely spaced sinc 

shapes, which results in aliasing in the image domain. 

Extending the concept of sampling from k-space to k-t space, these properties of the Fourier transform 

apply in the same fashion. The signals in the conjugate domain, which is called x-f space (x = spatial axis, 

f = temporal frequency), are contaminated through a convolution with a point spread function (Fig. 4). 

With this class of methods, a potential advantage is that if the signal distribution in x-f space is known or 

can be estimated, it is possible to adjust the k-t sampling pattern in order to control the x-f point spread 

function and minimize the amount of signal contamination. Under certain conditions, it is possible to 

perfectly recover the missing data.  

In general, since the data acquisition and reconstruction are based on assumptions or knowledge of the 

signal distribution, reconstruction accuracy is dependent on the quality of those assumptions or 

knowledge. Depending on the implementation, the existing methods differ considerably in their 

robustness against practical nonidealities, such as changes in motion pattern during the acquisition. 

 

Summary 
Over the years, many dynamic imaging methods have been developed that take advantage of 

spatiotemporal correlations. By doing so, the methods are able to acquire only a fraction of the data and 

fill in the rest afterwards to achieve higher performance in terms of a higher frame rate, and/or shorter 

scan duration. In this process, image reconstruction amounts to recovering the missing information. The 

accuracy of the recovery is intimately linked to which data are sampled, and the k-t sampling pattern 

provides a useful conceptual tool for understanding and analyzing this aspect. 

The spatiotemporal correlations of the data are used in data recovery in one of two approaches. In the 

more heuristic approach, nearby data are assumed to be similar, so the missing data are recovered 

simply with well known interpolation techniques (e.g. nearest neighbor, linear, cubic spline interpolation, 

etc.). For example, this approach has been used with considerable success in retrospective cardiac 

gating by interpolating temporally. In the second approach, one estimates the correlations directly from 

the data, and then applies those correlations to data recovery. This approach is more sensitive to the 

k

t

x

f

k-t sampling
pattern

x-f point 
spread function

Fourier
k

t

x

f

k-t sampling
pattern

x-f point 
spread function

Fourier

 
Fig.4.  k-t sampling patterns chosen to control point spread function in x-f space. 



accuracy of the estimation, but provides an unprecedented capability to tune specifically to the image 

contents.  
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